Origins and genetic nonvariability of the proteins which diffuse from maize pollen.
نویسنده
چکیده
The major function of pollen is to deliver the sperm nuclei to the embryo sac. It does this by germinating and producing a pollen tube and thus provides a relatively simple developmental system for study. Mutants for many pollen functions are accessible, as it is a haploid cell. Mature pollen was fractionated into diffusible proteins, soluble proteins, and proteins insolubly associated with membrane or wall; these protein fractions have been quantified and cataloged by native and SDS polyacrylamide gel electrophoresis. Diffusible proteins are localized in the pollen grain wall whereas soluble proteins are cytoplasmic. The roles of haploid and diploid genomes in specifying these proteins is discussed. Pollen from maximally divergent maize lines was examined for quantitative and qualitative variation in the diffusible proteins. A surprising conservation was found for these proteins indicating some functional role which is, at present, unknown. Initial experiments on the incorporation of 35S-methionine into germinating pollen indicate that major representatives of the diffusible proteins are made within the pollen grain itself. They are presumably included in the pollen wall during development and diffuse out through the pore region. Studies with pollen mRNA and experiments on incorporation of 35S-methionine into developing anthers are underway and will identify the origin of these proteins. A knowledge of the basic developmental biology of maize pollen is a prerequisite to its judicious use as a monitor of environmental mutagens.
منابع مشابه
Cloning, Overexpression and in vitro Antifungal Activity of Zea Mays PR10 Protein
Background: Plants have various defense mechanisms such as production of antimicrobial peptides, particularly pathogenesis related proteins (PR proteins). PR10 family is an essential member of this group, with antifungal, antibacterial and antiviral activities.Objective: The goal of this study is to assess the antifungal activity of maize PR10 against some of fungal phytopathogens.M...
متن کاملDiversity and function of maize pollen coat proteins: from biochemistry to proteomics
Maize (Zea mays L.) is globally cultivated as one of the most important grain crops. As a wind-pollinated species, maize produces a large quantity of pollen grains that heavier and larger compared to Arabidopsis. Maize is an important model plant in pollen biology of monocots. The pollen coat, the outermost layer of pollen, plays a vital role in pollen-stigma interactions and successful fertili...
متن کاملEffect of Stacked Insecticidal Cry Proteins from Maize Pollen on Nurse Bees (Apis mellifera carnica) and Their Gut Bacteria
Honey bee pollination is a key ecosystem service to nature and agriculture. However, biosafety research on genetically modified crops rarely considers effects on nurse bees from intact colonies, even though they receive and primarily process the largest amount of pollen. The objective of this study was to analyze the response of nurse bees and their gut bacteria to pollen from Bt maize expressi...
متن کاملThe effect of resistance training and date pollen extract on bone tissue density and osteoblast cell proliferation in young male rats
Extended Abstract 1.Introduction One of the tissues that is affected by physical activity is bone. Bone is one of the tissues that needs to receive mechanical load to have normal function as a key factor in strengthening bone mass (2). Evidence shows that the mechanical load resulting from physical activity activates a set of proteins involved in the process of osteoblast activation and inhib...
متن کاملConsumption of Bt Maize Pollen Expressing Cry1Ab or Cry3Bb1 Does Not Harm Adult Green Lacewings, Chrysoperla carnea (Neuroptera: Chrysopidae)
Adults of the common green lacewing, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae), are prevalent pollen-consumers in maize fields. They are therefore exposed to insecticidal proteins expressed in the pollen of insect-resistant, genetically engineered maize varieties expressing Cry proteins derived from Bacillus thuringiensis (Bt). Laboratory experiments were conducted to evaluate the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental Health Perspectives
دوره 37 شماره
صفحات -
تاریخ انتشار 1981